South East Asian J. of Mathematics and Mathematical Sciences Vol. 21, No. 2 (2025), pp. 125-136

ISSN (Print): 0972-7752

NEW APPROACH ON BINARY SUPRA MULTISET TOPOLOGICAL SPACE

S. P. R. Priyalatha and R. Sowndariya

Department of Mathematics, Kongunadu Arts and Science College, Coimbatore - 641 029, Tamil Nadu, INDIA

E-mail: priyalathamax@gmail.com, sowndariyainf@gmail.com

(Received: Jun. 30, 2024 Accepted: Jul. 23, 2025 Published: Aug. 30, 2025)

Abstract: In this paper, we introduce the concept of binary supra M-topology (bsm), which combines features of binary supra topology and supra M-topology. Several concrete examples are presented to illustrate the structure and behavior of binary supra M-topology. Additionally, various properties of binary supra M-topology are explored and analyzed.

Keywords and Phrases: Binary supra M-topological space, binary supra open multiset, binary supra closed multiset, binary supra interior multiset, binary supra closure multiset.

2020 Mathematics Subject Classification: 54A05, 54BO5, 03E70.

1. Introduction

A multiset is regarded as a generalization of a set in mathematics. According to classical set theory, a set is a clearly defined collection of unique items. If an object can appear more than once in a set, then the mathematical structure is called a multiset [2]. In a topological context, a multiset considers the number of occurrences of an element x in a multiset M. We represent the multiset M drawn from the set $X = \{x_1, x_2, \ldots, x_n\}$ as $M = \{m_1/x_1, m_2/x_2, \ldots, m_n/x_n\}$, where m_i is the number of occurrences of the element x_i (for $i = 1, 2, \ldots, n$) in the multiset M. The concept of an M-topological space has been investigated through multiset

closure, multiset interior, multiset limit points, multiset neighborhoods, and multiset continuous functions [7]. A set X with a family μ of its subsets is called a supra topological space, denoted by (X,μ) , if $X \in \mu$ and the arbitrary union of members of μ are examined. Devi, et. al, [3] established the binary properties of open and closed are discussed. Elekiah established the concept of some properties of S_{α} open and closed sets in binary topological space [4] and also El-Sheikh [6] introduced the supertopological space properties of decompositions of some types supra supramultisets. Mashhour, et.al., [10] presented the supra topological space some basic theorems and examples are examined. Assad [1] contributed to the study of some operators on supra topological spaces, El-Shafei [5] presented applications of pre-open sets in supra topological spaces, exploring supra boundaries and supra limit points with respect to pre-open sets, and examining their behavior in spaces with the difference property. A binary topological space [9] is a structure that simultaneously considers the subsets of sets X and Y, studying information about ordered pairs (A, B) of subsets of X and Y. In a generalized binary topological space, certain conditions involving intersections of elements of these subsets are satisfied. Lellis Thivagar [8] presented by on binary structure of supra topological space discussed continuous functions and their properties for binary supra α set, binary supra β set, binary supra semi-open set, binary supra pre-open set are discussed. Shravan and Tripathy [12], [13] presented the multiset topological space with kuratowski closure operators and metrizability related theorem and examples are discussed. In this paper, we introduce the concept of the binary supra M-topological space $(b_{\mu M})$. Additionally, we define and examine several types of binary supra multisets, including the binary supra open multiset, binary supra interior multiset, binary supra closure multiset, binary supra M-neighborhood, binary supra pre-open multiset, and binary supra α -open multiset. The properties of these binary supra multiset are also thoroughly investigated.

2. Preliminaries

Definition 2.1. [10] A subfamily τ^* of X is said to be a supra topology on X if, (i) X, $\phi \in \tau^*$.

(ii) If $A_i \in \tau^*$ for all $i \in J$, then $\cup A_i \in \tau^*$.

 (X, τ^*) is called a supra topological space. The elements of τ^* are called supra open sets in (X, τ^*) and complement of a supra open set is called a supra closed set.

Definition 2.2. [10] The supra closure of a set A is denoted by supra cl(A) and defined as supra as supra $cl(A) = \cap \{B : B \text{ is a supra closed and } A \subseteq B\}$. The supra interior of a set A is denoted by supra int(A), and defined as supra $int(A) = \cup \{B : B \text{ is a supra open and } A \supseteq B\}$.

Definition 2.3. [10] Let (X, τ) be a topological space and τ^* be a supra topology on X. We call τ^* a supra topology associated with τ if $\tau \subseteq \tau^*$.

Definition 2.4. [10] Let (X, τ^*) be a supra topological space. A set A is called supra semiopen sett if $A \subseteq supracl(supraint(A))$.

Definition 2.5. [7] Let $M \in [X]^w$ and $\tau \subseteq P^*(M)$. Then τ is called a multiset topological space of M if τ satisfies the following properties.

- (i) The multiset M and the empty multiset ϕ are in τ .
- (ii) The multiset union of the elements of any sub collection of τ is τ .
- (iii) The multiset Intersection of the elements of any finite sub collection of τ is $in\tau$.

Definition 2.6. [7] A sub multiset N of M-topological space M in $[X]^w$ is said to be closed if the multiset $M \in N$ is open. In discrete M-topological space every multiset is an open multiset as well as a closed multiset. In the M-topological space $PF(M) \cup \phi$, every multiset is an open multiset as well as a closed multiset.

Definition 2.7. [7] Given a subsmet A of an M-topological space M in $[X]^w$, the interior of A is defined as the multiset union of all open multiset contained in A and its denoted by Int(A). i.e., $Int(A) = \bigcup \{G \subseteq M : Gis \text{ an open multiset and } G \subseteq A\}$ and $C_{Int(A)}(x) = max\{C_G(x) : G \subseteq A\}$.

Definition 2.8. [7] Given a subsmet A of an M-topological space space M in $[X]^w$, the closure of A is defined as the multiset intersection of all closed multiset containing A and its denoted by Cl(A). i.e., $Cl(A) = \bigcap \{K \subseteq M : K \text{ is a closed multiset} \}$ and $A \subseteq K$ and $C_{Cl(A)}(x) = \min \{C_K(x) : A \subseteq K\}$.

Definition 2.9. [7] Let (M, τ) be a M-topological space, let $x \in E^k M$ and $N \subseteq M$. Then N is said to be a neighborhood of k/x if there is an open multiset V in τ such that $x \in {}^k V$ and $C_V(y) \leq C_N(y)$ for all $y \neq x$. i.e., a neighborhood of k/x in M means any open multiset containing k/x. Here k/x is said to be an interior points of N.

Definition 2.10. [9] Let X And Y be any two no empty sets. A binary topological space X to Y is a binary structure $M \subseteq \rho(X) \times \rho(Y)$ that satisfies the following axioms.

- (i) (ϕ, ϕ) and $(M,N) \in M$.
- (ii) $(A_1 \cap A_2, B_1 \cap B_2) \in M$ whenever $(A_1, B_1) \in M, (A_2, B_2) \in M$.
- (iii) If $\{(A_{\alpha}, B_{\alpha}) : \alpha \in \Delta\}$ is a family of members of M, then $(\bigcup \in \Delta A_{\alpha}, \bigcup \in \Delta B_{\alpha}) \in M$.

 α α

Definition 2.11. [8] Let μ be a collection of subsmets of X. Then, $\mu \subseteq P^*(X)$ is called supra M-topology on X if the following conditions are satisfied:

- (i) $X, \Phi \in \mu$.
- (ii) The union of any number of multisets in μ belongs to μ .

The pair (X, μ) is called supra M-topological space (or supra M-spaces) over X.

Definition 2.12. [8] A subset A of X is called

- (i) supra semiopen if $A \subseteq cl_{\mu}(int_{\mu}(A))$.
- (ii) supra preopen if $A \subseteq int_{\mu}(cl_{\mu})$.
- (iii) supra α -open if $A \subseteq int_{\mu}(cl_{\mu}(int_{\mu}(A)))$.

3. Binary Supra M-topology

In this section, the binary supra multiset (bsm) and some preoperties are discussed.

- **Definition 3.1.** A binary supra multiset topological space (briefly, binary supra M-topological space) from M to N is represented as, $b_{\mu M} \subseteq P^*(M) \times P^*(N)$, where $b_{\mu M}$ satisfies the following axioms.
- (i) $(M, N) \in b_{\mu M}$ and $(\phi, \phi) \in b_{\mu M}$.
- (ii) For any family $\{(A_{\alpha}, B_{\alpha}) : \alpha \in \Delta\} \subseteq b_{\mu M}, (\cup A_{\alpha}, \cup B_{\alpha}) \in b_{\mu M}.$

If $b_{\mu M}$ forms a binary supra M-topology from M to N, then $(M, N, b_{\mu M})$ is termed a binary supra M-topological space. The elements of $b_{\mu M}$ are referred to as binary supra open multiset and their complements are binary supra closed multiset.

Definition 3.2. Let $(M, N, b_{\mu M})$ be a binary supra M-topological space and (M_1, N_1) $\in M \times N$. A binary supra multiset (A, B) of (M, N) is a binary supra M- negihbourhood if there exists a binary supra open multiset (U, V) such that $(M_1, N_1) \in (U, V) \subseteq (A, B)$.

Example 3.3. Let $M=\{1/a, 2/b, 3/c\}$ and $N=\{1/a, 1/b\}$ and $b_{\mu M}=\{(M, N), (\phi, \phi), (\{1/b\}, \{1/a\}), (\{2/c\}, \phi)\}$. Then $(M, N, b_{\mu M})$ forms binary supra M-topology.

Definition 3.4. Let $(M, N, b_{\mu M})$ be a binary supra M-topology over M and N. The members of $b_{\mu M}$ are termed binary supra open multiset in M and N. The set of all binary supra open multiset over M and N is denoted by BSMO $(M, N, b_{\mu M})$, and the set of all binary supra closed multiset is denoted by BSMC $(M, N, b_{\mu M})$.

Definition 3.5. In a binary supra M-topological space $(M, N, b_{\mu M})$, a multiset (Z_1, Z_2) is termed a binary supra closed multiset if its relative complement $(Z_1, Z_2)^C$ is a binary supra open multiset.

Definition 3.6. The collection of (M,N) and (ϕ,ϕ) forms a binary supra multiset indiscrete topological space or binary supra multiset trivial topological space

 $(M, N, b_{\mu M}).$

Note 3.7. Let binary supra multiset indiscrete topological space denoted as $[I = (M, N), (\phi, \phi)]$ then (M, N, I).

Definition 3.8. The collection of all bsm power set of (M,N) if $(M,N,b_{\mu M})$ is an binary supra multiset discrete topological space (or) trivial topological space.

Note 3.9. Let $D = P(M) \times P(N)$, be a binary supra multiset discrete topological space. The support bsm power set of (M, N, D) bsm discrete topological space (or) bsm trivial topological space.

Definition 3.10. Let $b^1_{\mu M}$ and $b^2_{\mu M}$ be two non-empty binary supra multiset of (M,N). If $b^1_{\mu M}$ is said to be bsm coarser, weaker, or smaller than and $b^2_{\mu M}$ if every binary supra open multiset $b^1_{\mu M}$ is also a $b^2_{\mu M}$. Conversely, $b^2_{\mu M}$ is bsm finer, bsm stronger or bsm greater binary supra multiset topological space than $b^1_{\mu M}$. If Both $b^1_{\mu M}$ and $b^2_{\mu M}$ not bsm comparable for $b^1_{\mu M}$ other wise is bsm comparable.

Example 3.11. Let $b^1_{\mu M} = \{(M,N), (\phi,\phi), (\{1/x\},\{1/y\})\}, b^2_{\mu M} = \{(M,N), (\phi,\phi), (\{2/x\},\{2/y\})(\phi,N)\}$. Since $b^1_{\mu M}$ is bsm coarser than $b^2_{\mu M}$, or $b^2_{\mu M}$ is bsm finer than $b^1_{\mu M}$. They are bsm comparable topologies space.

Definition 3.12. A binary supra M-topological space $(M, N, b_{\mu M})$ is termed binary supra M-neighborhood of the multi-points $(\{m/x\}, \{n/y\}) \in (M, N)$ if there exist a binary supra open multiset (G, H) such that $(\{m/x\}, \{n/y\}) \in (G, H) \subseteq (Z_1, Z_2)$. The binary supra M-neighborhood system of a binary supra multi-points $\{m/x\}$ and $\{n/y\}$, denoted by binary supra $b_{\mu M}$ is the family of all its binary supra M-neighborhood.

Definition 3.13. Let $(M, N, b_{\mu M})$ be a binary supra M-topological sapce and $(G, H) \in (P^*(M), P^*(N))$. Then binary supra interior multiset of (G, H) denoted $int_{\mu M}(G, H)$, is the union of all binary supra open sub multiset of (G, H). Formally, $int_{\mu M}(G, H) = \bigcup \{(I, J) : (I, J) \text{ is a binary supra open multiset and } (I, J) \subseteq (G, H)\}$ and $C_{int_{\mu M}}(M, N) = max\{C_{(I,J)}(M, N) : (I, J) \subseteq (G, H), (I, J) \in b_{\mu M}\}.$

Definition 3.14. Let $(M, N, b_{\mu M})$ be a binary supra M-topological space and $(K, L) \in (P^*(M), P^*(N))$. Then binary supra closure multiset of (K, L), denoted $cl_{\mu M}$ (K, L) is the intersection of all binary supra closed multiset containing (K, L). Formally, $cl_{\mu M}(K, L) = \cap \{(I, J) : (I, J) \text{ is a binary supra closed multiset and } (K, L) \subseteq (I, J)\}$ and $C_{cl_{\mu M}}(M, N) = min\{C_{(K, L)}(M, N) : (I, J) \subseteq (K, L), (I, J) \in b_{\mu M}\}$.

Example 3.15. Let $M_1 = \{1/p, 1/q\}, M_2 = \{1/p, 2/q, 1/r\}$. We consider the binary supra M-topological space $b_{\mu M} = \{(\phi, \phi), (M, N), (\{1/p\}, \{2/q\}), (\phi, M), ($

```
(\{1/r\}, \{1/p\})\} and (b_{\mu M})^C = \{(\phi, \phi), (M, N), (\{1/q\}, \phi), (\{1/r\}, \phi), (\{1/p, 2/q\}, \phi)\}. Clearly, is an b_{\mu M} binary supra M-topological space (A, B) = (\{1/p, 1/r\}), int_{\mu M}(A, B) = (\{1/p, 1/r\}) and cl_{\mu M} = (\{1/p, 1/r\}).
```

Definition 3.16. The ordered pair $((M, N)^{1*}, (M, N)^{2*})$ is the binary supra closure multiset of (M, N) denoted by $cl_{\mu M}(M, N)$ in the binary supra M-topological space $(M, N, b_{\mu M})$. Here, $(M, N) \subseteq (M, N)$.

- (i) $(M, N)^{1*} = \bigcap \{M_{\alpha} : (M_{\alpha}, N_{\alpha}) \text{ is binary supra closed multiset and } (M, N) \subseteq (M_{\alpha}, N_{\alpha}) \}$,
- (ii) $(M,N)^{2*} = \bigcap \{N_{\alpha} : (M_{\alpha},N_{\alpha}) \text{ is binary supra closed multiset and } (M,N) \subseteq (M_{\alpha},N_{\alpha})\}.$

Definition 3.17. Let $(M, N, b_{\mu M})$ be a binary supra M-topological space with $(M, N) \subseteq (M, N)$. The ordered pair $((M, N)^{1o}, (M, N)^{2o})$ is the binary supra interior multiset of (M, N) denoted by $int_{\mu M}(M, N)$,

- (i) $(M,N)^{1o} = \bigcup \{M_{\alpha} : (M_{\alpha},N_{\alpha}) \text{ is binary supra open multiset and } (M,N) \subseteq (M_{\alpha},N_{\alpha})\}$,
- (ii) $(M,N)^{2o} = \bigcup \{N_{\alpha} : (M_{\alpha},N_{\alpha}) \text{ is binary supra open multiset and } (M,N) \subseteq (M_{\alpha},N_{\alpha})\}.$

Example 3.18. Let $M = \{2/a, 1/b, 3/c\}$ and $N = \{1/a, 2/b\}$ with binary supra M-topology given by, $b_{\mu M} = \{(M, N), (\phi, \phi), (\{1/a, 1/c\}, N), (\{2/a, 1/b\}, \{2/b\}), (\phi, N) \text{ and its complement } (b_{\mu M})^C = \{(M, N), (\phi, \phi), (\{1/a, 1/b, 3/c\}, \phi), (M, \phi). \text{ If } (M, N) = (\{1/b\}, \phi), \text{ then } cl_{\mu M}(M, N) = (\{1/a, 1/b, 3/c\}, \phi) \text{ and } int_{\mu M}(M, N) = (\phi, \phi).$

Theorem 3.19. In a binary supra M-topological space $(M, N, b_{\mu M})$, if $(M, N) \subseteq (M, N)$ then prove the following,

- (i) $cl_{\mu M}(M, N)$ is the smallest binary supra closed multiset containing (M, N).
- (ii) (M,N) is a binary supra closed multiset in $(M,N,b_{\mu M})$ if and only if $(M,N)=cl_{\mu M}(M,N)$.
- **Proof.** (i) Let $\{(M_{\alpha}, N_{\alpha}) : \alpha \in \Delta\}$ be the collection of all binary supra closed multiset containing (M,N). Then $(O,P) = \bigcap \{(M_{\alpha}, N_{\alpha}) : \alpha \in \Delta\}$ is a binary supra closed multiset. Since each (M_{α}, N_{α}) is a superset of (M,N) that is (M,N) contained in their intersection. Therefore $(M,N) \subseteq (O,P)$ that is $(O,P) \subseteq (M_{\alpha}, N_{\alpha})$ for each $(x,y) \in \Delta$, and hence (O,P) is the smallest binary supra closed multiset containing (M,N). Therefore, $cl_{\mu M}(M,N)$ is the smallest binary supra closed multiset containing (M,N).
- (ii) If (M,N) is a binary supra closed multiset in $(M,N,b_{\mu M})$, then $(M,N) \subseteq cl_{\mu M}(M,N)$. Conversely, if $cl_{\mu M}(M,N) = (M,N)$, then (M,N) is a binary supra

closed multiset because $cl_{\mu M}(M, N)$ is by definition 3.16 the smallest binary supra closed multiset containing (M,N) and $cl_{\mu M}(M,N) = (M,N)$.

Proposition 3.20. Let (M_1, N_1) and $(M_2, N_2) \subseteq P^*(M) \times P^*(N)$ and $(M, N, b_{\mu M})$ is a binary supra multiset topological space. Then

- (i) $cl_{\mu M}(\phi, \phi) = (\phi, \phi)$ and $cl_{\mu M}(M, N) = (M, N)$.
- (ii) $(M_1, N_1) \subseteq cl_{\mu M}(M_1, N_1)$.
- (iii) $cl_{\mu M}(cl_{\mu M}(M_1, N_1)) = cl_{\mu M}(M_1, N_1).$
- (iv) $cl_{\mu M}(M_1, N_1) \cup (cl_{\mu M}(M_2, N_2) \subseteq cl_{\mu M}((M_1, N_1) \cup (M_2, N_2)).$
- (v) $cl_{\mu M}(M_1, N_1) \cap (cl_{\mu M}(M_2, N_2) \subseteq cl_{\mu M}((M_1, N_1) \cap (M_2, N_2)).$
- **Proof.**(i) By the theorem, (M_1, N_1) is a binary supra closed multiset in $(M, N, b_{\mu M})$ if and only if $(M_1, N_1) = cl_{\mu M}(M_1, N_1)$. Since both (ϕ, ϕ) and (M, N) are binary supra closed multiset, then $cl_{\mu M}(\phi, \phi) = (\phi, \phi)$ and $cl_{\mu M}(M, N) = (M, N)$.
- (ii) According to the theorem, $cl_{\mu M}(M_1, N_1)$ is the smallest binary supra closed multiset containing (M_1, N_1) , implying $(M_1, N_1) \subseteq cl_{\mu M}(M_1, N_1)$.
- (iii) Let (M_1, N_1) be a binary supra closed multiset in $(M, N, b_{\mu M})$. By definition 3.16, $(M_1, N_1) = cl_{\mu M}(M_1, N_1)$, and $cl_{\mu M}(M_1, N_1)$ is also a binary supra closed multiset. Therefore, $cl_{\mu M}(cl_{\mu M}(M_1, N_1)) = cl_{\mu M}(M_1, N_1)$.
- (iv) Consider $(M_1, N_1) \subseteq (M_1, N_1) \cup (M_2, N_2)$ and $(M_2, N_2) \subseteq (M_1, N_1) \cup (M_2, N_2)$. Thus, $cl_{\mu M}(M_1, N_1) \subseteq cl_{\mu M}((M_1, N_1) \cup (M_2, N_2))$ and $cl_{\mu M}(M_2, N_2) \subseteq cl_{\mu M}((M_1, N_1) \cup (M_2, N_2))$. $\cup (M_2, N_2)$). Therefore, $cl_{\mu M}(M_1, N_1) \cup cl_{\mu M}(M_2, N_2) \subseteq cl_{\mu M}((M_1, N_1) \cup (M_2, N_2))$.
- (v) For the intersection, let $(M_1, N_1) \cap (M_2, N_2) \subseteq (M_1, N_1)$ and $(M_2, N_2) \cap (M_2, N_2) \subseteq (M_1, N_1)$. Thus, $cl_{\mu M}((M_1, N_1) \cap (M_2, N_2)) \subseteq cl_{\mu M}(M_1, N_1)$ and $cl_{\mu M}((M_1, N_1) \cap (M_2, N_2)) \subseteq cl_{\mu M}(M_2, N_2)$. Hence, $cl_{\mu M}(M_1, N_1) \cap cl_{\mu M}(M_2, N_2) \subseteq cl_{\mu M}((M_1, N_1) \cap (M_2, N_2))$.

Theorem 3.21. Let $(M, N, b_{\mu M})$ be a binary supra M-topological space, and let (M,N) be a subspace of $(M, N, b_{\mu M})$. Then

- (i) $int_{\mu M}(M, N)$ is a binary supra open multiset.
- (ii) $int_{\mu M}(M, N)$ is the largest binary supra open multiset contained in (M, N).
- (iii) (M,N) is a binary supra open multiset if and only if $int_{\mu M}(M,N)=(M,N)$.

- **Proof.** (i) Every binary supra open multiset is a binary supra M-neighborhood of each of its points. Let $(m,n) \in int_{\mu M}(M,N)$ is a binary supra interior multiset of (M,N). Thus, there exists a binary supra open multiset (M_2,N_2) such that $(m,n) \in (M_2,N_2) \subseteq (M,N)$. Since (M_2,N_2) is binary supra open multiset, it is a binary supra M-neighborhood of each of its points, and hence (M,N), being a superset of (M_2,N_2) , is also a binary supra M-neighborhood of each point of (M_2,N_2) . Thus, every points of (M_2,N_2) is a binary supra interior multiset point of (M,N), implying $(M_2,N_2) \subseteq int_{\mu M}(M,N)$. Therefore, $(m,n) \in (M_2,N_2) \subseteq int_{\mu M}(M,N)$. It follows that every point in (M_2,N_2) is contained in $int_{\mu M}(M,N)$. Hence, $int_{\mu M}(M,N)$ is a binary supra M-neighborhood of each of its points and consequently a binary supra open multiset.
- (ii) Let (M_2, N_2) be binary supra open multiset contained in (M,N), and let $(m,n) \in (M_2, N_2)$. Then $(m,n) \in (M_2, N_2) \subseteq (M,N)$. Since (M_2, N_2) is binary supra open, (M,N) is a binary supra M-neighborhood of $(m,n) \in (M_2, N_2)$, and hence (M,N) is a $int_{\mu M}(M,N)$. Since $(m,n) \in (M_2, N_2)$, it implies $(m,n) \in int_{\mu M}(M,N)$. Therefore, $(M_2, N_2) \subseteq int_{\mu M}(M,N)$, and from (i), is an binary supra open multiset. Thus, $int_{\mu M}(M,N)$ contains every binary supra open multiset (M_2,N_2) of (M,N), making it the largest such subset.
- (iii) If $(M, N) = int_{\mu M}(M, N)$, then $int_{\mu M}(M, N)$ is a binary supra open multiset, implying (M,N) is also a binary supra open multiset. Conversely, if (M,N) is a binary supra open multiset, then by (i), $int_{\mu M}(M,N)$ is the largest binary supra open multiset of (M,N). Hence, $int_{\mu M}(M,N) = (M,N)$.

Theorem 3.22. Let $(M, N, b_{\mu M})$ be a binary supra M-topological space and let (M_1, N_1) and (M_2, N_2) be any subset of (M, N), following by,

- (i) $int_{\mu M}(\phi, \phi) = (\phi, \phi)$.
- (ii) $int_{\mu M}(M, N) = (M, N)$.
- (iii) $int_{\mu M}(M_1, N_1) \cap (int_{\mu M}(M_2, N_2) \subseteq int_{\mu M}((M_1, N_1) \cap (M_2, N_2)).$
- (iv) $int_{\mu M}(int_{\mu M}(M_1, N_1)) = int_{\mu M}(M_1, N_1).$
- (v) $int_{\mu M}(M_1, N_1) \cup (int_{\mu M}(M_2, N_2) \subseteq int_{\mu M}((M_1, N_1) \cup (M_2, N_2)).$

Proof. Let (M_1, N_1) be binary supra open multiset iff $int_{\mu M}(M_1, N_1) = (M_1, N_1)$. (i) and (ii) Since both (\emptyset, \emptyset) and (M, N) are binary supra open multiset, it follows that $int_{\mu M}(\emptyset, \emptyset) = (\emptyset, \emptyset)$ and $int_{\mu M}(M, N) = (M, N)$.

(iii) Consider $(M_1, N_1) \cap (M_2, N_2) \subseteq (M, N)$. Then $int_{\mu M}((M_1, N_1) \cap (M_2, N_2)) \subseteq$

- $int_{\mu M}(M_1, N_1)$ and $int_{\mu M}((M_1, N_1) \cap (M_2, N_2)) \subseteq int_{\mu M}(M_2, N_2)$. Hence, $int_{\mu M}((M_1, N_1) \cap (M_2, N_2)) \subseteq int_{\mu M}(M_1, N_1) \cap int_{\mu M}(M_2, N_2)$.
- (iv) Since, $int_{\mu M}(M_1, N_1)$ is a binary supra open multiset, hence $int_{\mu M}(int_{\mu M}(M_1, N_1)) = int_{\mu M}(M_1, N_1)$.
- (v) Thus, $(M_1, N_1) \subseteq (M_1, N_1) \cup (M_2, N_2)$ and $(M_2, N_2) \subseteq (M_1, N_1) \cup (M_2, N_2)$. Therefore, $int_{\mu M}(M_1, N_1) \subseteq int_{\mu M}((M_1, N_1) \cup (M_2, N_2))$ and $int_{\mu M}(M_2, N_2) \subseteq int_{\mu M}((M_1, N_1) \cup (M_2, N_2))$. Hence, $int_{\mu M}(M_1, N_1) \cup int_{\mu M}(M_2, N_2) \subseteq int_{\mu M}((M_1, N_1) \cup (M_2, N_2))$.

4. Relations Between Binary Supra M-space

Definition 4.1. A subset of (A,B) of $(M,N,b_{\mu M})$ is called

- (i) A binary supra pre-open multiset if $(A, B) \subseteq int_{\mu M}(cl_{\mu M}(A, B))$.
- (ii) A binary supra pre-closed multiset if $cl_{\mu M}(int_{\mu M}(A, B)) \subseteq (A, B)$.
- (iii) An binary supra α -open multiset if $(A, B) \subseteq cl_{\mu M}(int_{\mu M}(A, B))$.
- (iv) An binary supra α -closed multiset if $cl_{\mu M}(int_{\mu M}(cl_{\mu M}(A, B))) \subseteq (A, B)$.
- (vi) A binary supra $r\alpha$ -open multiset if $(A, B) = cl_{\mu M}(int_{\mu M}(A, B))$.
- (v) A binary supra semi-open multiset if $(A, B) \subseteq cl_{\mu M}(int_{\mu M}(A, B))$.
- (vi) A binary supra semi-closed multiset if $int_{\mu M}(cl_{\mu M}(A, B)) \subseteq (A, B)$.

Remark 4.2. Binary supra α -open multiset forms a binary supra m-topology. Every binary supra open multiset is a binary supra α -open multiset but the converse is not true.

Theorem 4.3. Let subset (A,B) be a $(M,N,b_{\mu M})$ is binary supra semi-open multiset if and only if $(A,B) = cl_{\mu M}(int_{\mu M}(A,B))$.

Proof. Assume (A,B) that subset in every open bsm is know as binary supra semi-open multiset, and the complement of a bsm semi-open is binary supra semi-closed multiset. A binary supra semi-open multiset satisfies $(A,B) \subseteq int_{\mu M}(A,B)$. A binary supra closed multiset is defined by $(A,B) \subseteq cl_{\mu M}(A,B) \subseteq b^c_{\mu M}$. Since $(A,B) \subseteq cl_{\mu M}(int_{\mu M}(A,B))$, it follows that $(A,B) = int_{\mu M}(A,B)$.

Theorem 4.4. A subset (A,B) of the binary supra semi-topological space $(M,N,b_{\mu M})$ is classified as binary supra semi-closed if and only if $int_{\mu M}(cl_{\mu M}(A,B))=(A,B)$. **Proof.** Let (A,B) be a subset of (M,N). The complement of an supra binary open multiset is binary supra closed multiset, which means that a binary supra

semi-closed multiset satisfies $(A, B) \subseteq cl_{\mu M}(A, B) \subseteq b^c_{\mu M}$. Conversely, the complement of a binary supra closed mset is binary supra semi-open multiset, given by $(A, B) \subseteq int_{\mu M}(A, B) \subseteq b^c_{\mu M}$. Thus, we have $int_{\mu M}(cl_{\mu M}(A, B)) \subseteq (A, B) \subseteq b^c_{\mu M}$.

Example 4.5. Let $M = \{1/x, 2/y\}, N = \{3/c, 6/d\}$ be a binary supra M-topology, i.e., $b_{\mu M} = \{(\phi, \phi), (\{M, N\}), (\{\phi, 1/y\}), (\{1/x, 2/y\}), (\{2/c\}, \{3/d\}), (\{5/d\}, M_2)\}$ then $b_{\mu M}(\alpha) = \{(\phi, \phi), (\{M, N\}), (\{\phi, 1/y\}), (\{1/x\}), (M_1, \{3/d\}), (\{5/d\}, M_2)\}$. Here $b_{\mu M}(\alpha)$ -open multiset need not to be binary supra open multiset.

Theorem 4.6. Every binary supra closed multiset in (M,N) is binary supra α -closed multiset.

Proof. Let (A,B) be a binary supra closed multiset in (M,N). Let (G,H) be any binary supra α -open multiset in (M,N) Such that $(A,B) \subseteq (G,H)$. Since (A,B) is binary supra closed multiset, we have $cl_{\mu M}(A,B) = (A,B)$, and $\alpha cl_{\mu M}(A,B) \subseteq cl_{\mu M}(A,B) \subseteq (G,H)$. Hence (A,B) is binary supra α -closed multiset in (M,N).

Theorem 4.7. Every binary supra α -closed multiset in (M,N) is binary supra $r\alpha$ -closed multiset.

Proof. Let (A,B) be a binary supra α -closed multiset in binary supra multiset topological space (M,N). Let (U,V) be an binary supra $r\alpha$ -open multiset in (M_1,M_2) such that $(A,B)\subseteq (U,V)$. Since (A,B) is binary supra α -closed multiset, and $\alpha cl_{\mu M}(A,B)=(A,B)\subseteq (U,V)$. Therefore $\alpha cl_{\mu M}(A,B)\subseteq (U,V)$. Hence (A,B) is binary supra $r\alpha$ -closed multiset.

Theorem 4.8. Every binary supra open multiset (M, N) is binary supra α -open multiset.

Proof. Let (A,B) be a binary supra closed multiset in (M,N). Let (S,T) be any binary supra α -closed multiset in binary supra multiset topological space. Such that $(A,B) \subseteq (S,T)$. Since (A,B) is binary supra open multiset, and $cl_{\mu M}(A,B) = (A,B)$, Since $\alpha int_{\mu M}(A,B) \subseteq int_{\mu M}(A,B) \subseteq (S,T)$. Hence (A,B) is binary supra α -open multiset (M,N).

Theorem 4.9. Every binary supra α -open multiset in (M,N) binary supra $r\alpha$ -open multiset.

Proof. Let (A,B) be a binary supra α -closed multiset in (M,N). Let (U,V) be an binary supra $r\alpha$ -open multiset in binary supra topological space such that $(A,B)\subseteq (U,V)$. Since (A,B) is binary supra α -open multiset and $\alpha int_{\mu M}(A,B)=(A,B)\subseteq (U,V)$. Therefore $\alpha int_{\mu M}(A,B)\subseteq (U,V)$. Hence (A,B) is binary supra $r\alpha$ -open multiset.

Theorem 4.10. Every binary supra open multiset (M,N) is binary supra pre-open multiset (M,N).

Proof. Since (A,B) is binary supra open multiset in $(M_1, M_2, b_{\mu M})$, such that (G,H) be any binary supra pre-closed multiset in (M,N). Such that $(A, B) \subseteq (G, H)$. Thus $(int_{\mu M}(cl_{\mu M})(A,B)) \subseteq int_{\mu M}(A,B)$, therefore binary supra pre-open multiset of $int_{\mu M}(A,B) \subseteq (G,H)$.

Hence $(int_{\mu M}(cl_{\mu M}(A, B)) \subseteq (G, H)$.

5. Conclusion

This paper introduced the concept of binary supra multiset topology, established its characterizations, and analysed its key properties. The relationship with existing multiset topological structures was also examined, laying a basis for further research.

References

- [1] Asaad Baravan A., Al-Shami Tareq M., and Abo-Tabl El-Sayed A., Application of some operators on supra topological spaces, Demonstration Mathematica, 53 (2022), 292–308.
- [2] Blizard W. D., Multiset theory, Notre Dame Journal of Formal Logic, 30(1) (1989), 36–66.
- [3] Devi R., Sampathkumar S., and Caldas M., On supra α -open set and S α -continuous functions, General Mathematics, 16(2) (2008), 77–84.
- [4] Elekiah J. and Sindhu G., Some Properties of binary S_{α} open and Closed Sets in binary Topological Space, South East Asian Journal of Mathematics and Mathematical Sciences, 19(3) (2024).
- [5] El-Shafei M. E., Zakari A. H., and Al-Shami T. M., Some Applications of supra Preopen sets, Journal of Mathematics, Article ID 9634206, 2020.
- [6] El-Sheikh S. A., Omar R. A.-K., and Raafat M., Supra M-topological space and decompositions of some types of supra multisets, International Journal of Mathematics Trends and Technology, 20(1), (2015).
- [7] Girish K. P. and Jacob John Sunil, Multiset topologies induced by multiset relation, Information Sciences, 188 (2012), 298–313.
- [8] Lellis Thivagar M. and Kavitha J., On Binary Structure of Supra Topological Space, Boletim da Sociedade Paranaense de Matemática, 35(3) (2017), 25–37.
- [9] Nithyanantha Jothi S. and Thangavelu P., On binary Topological Spaces, Pacific-Asian Journal of Mathematics, 5(2) (2011), 95–107.

- [10] Mashhour A. S., Allam A. A., Mahmoud F. S., and Khedr F. H., On supra topological spaces, Indian Journal of Pure and Applied Mathematics, 14(4) (1983), 502–510.
- [11] Sayed O. R. and Noiri T., On supra b-open sets and supra b-continuity on topological spaces, European Journal of Pure and Applied Mathematics, 3(2) (2010), 295–302.
- [12] Shravan K. and Tripathy B. C., Multiset ideal topological spaces and Kuratowski closure operator, Bulletin of the University of Transilvania Brasov, Series III: Mathematics, Informatics, Physics, 13(62) (2020), 273–284.
- [13] Shravan K. and Tripathy B. C., Metrizability of multiset topological spaces, Bulletin of the University of Transilvania Brasov, Series III: Mathematics, Informatics, Physics, 13(62) (2020), 683–696.